Lelieveld, J., Proestos, Y., Hadjinicolaou, P. et al. Climatic Change (2016) 137: 245. doi:10.1007/s10584-016-1665-6

Max Planck Institute for Chemistry MainzGermany
The Cyprus Institute Nicosia Cyprus

Open AccessArticle

First Online:
23 April 2016

DOI: 10.1007/s10584-016-1665-6

Abstract

The ensemble results of CMIP5 climate models that applied the RCP4.5 and RCP8.5 scenarios have been used to investigate climate change and temperature extremes in the Middle East and North Africa (MENA). Uncertainty evaluation of climate projections indicates good model agreement for temperature but much less for precipitation. Results imply that climate warming in the MENA is strongest in summer while elsewhere it is typically stronger in winter. The summertime warming extends the thermal low at the surface from South Asia across the Middle East over North Africa, as the hot desert climate intensifies and becomes more extreme. Observations and model calculations of the recent past consistently show increasing heat extremes, which are projected to accelerate in future. The number of warm days and nights may increase sharply. On average in the MENA, the maximum temperature during the hottest days in the recent past was about 43 °C, which could increase to about 46 °C by the middle of the century and reach almost 50 °C by the end of the century, the latter according to the RCP8.5 (business-as-usual) scenario. This will have important consequences for human health and society.

1 Introduction

Even if climate change in the 21st century will be limited to a global mean temperature increase of 2 °C relative to pre-industrial times, warming over land is typically stronger than over the oceans and extreme temperatures in many regions can increase well beyond 2 °C (Seneviratne et al. 2016). The Middle East and North Africa (MENA) are expected to be strongly affected by climate warming, enhancing the already hot and dry environmental conditions (Sanchez et al. 2004; Fang et al. 2008; Giorgi and Lionello 2008; Önol and Semazzi 2009; Lelieveld et al. 2012; Almazroui 2013: Önol et al. 2014; Basha et al. 2015; Ozturk et al. 2015). Assessments of past climate trends in the MENA often suffered from restricted availability of meteorological data sets, and hence are associated with low confidence (IPCC 2013). Several international workshops have been organized to help improve data access, ensure data quality and analyze climate indices (Zhang et al. 2005; Donat et al. 2014).

Based on the available data significant upward temperature trends since the 1970s have been derived for parts of the MENA and Mediterranean Europe (AlSarmi and Washington 2011; Almazroui et al. 2012; Tanarhte et al. 2012; Zarenistanak et al. 2014), accompanied by an increasing number of warm days and high temperature extremes (Kuglitsch et al. 2010; Marofi et al. 2010; Efthymiadis et al. 2011; Donat et al. 2014; Simolo et al. 2014; Tanarhte et al. 2015). While rainfall trends in Mediterranean Europe are significant and predominantly negative, in the MENA they are generally not significant, partly related to the difficulty of establishing representative precipitation measurement networks in this arid region (Xoplaki et al. 2004; Hoerling et al. 2012; Tanarhte et al. 2012; Norrant-Romand and Douguedroit 2014; Ziv et al. 2014).

Analysis of long-term temperature data suggests that since the 1970s the frequency of heat extremes has increased in the MENA (Tanarhte et al. 2015). Based on health statistics and meteorological data Lubczyńska et al. (2015) identified a clear relationship between high temperatures and cardiovascular mortality by cerebrovascular disease, ischemic and other heart diseases, consistent with similar investigations in other regions (Basu and Samet 2002; Gosling et al. 2009). Heat extremes are recognized as the major weather-related cause of premature mortality (McMichael et al. 2006; Kovats and Hajat 2008; Gosling et al. 2009; Peterson et al. 2013), hence their increase in the MENA is of great concern (Lelieveld et al. 2014; Zittis et al. 2015). Heat stress can also cause substantial loss of labor productivity (Dunne et al. 2013; Zander et al. 2015). Further, it is argued that climate change induced weather extremes can impact human security and migration (Barnett and Adger 2007; Piguet et al. 2010; IPCC 2014). Thus heat stress has direct health consequences, while social, economic and political contexts are also important. Both perspectives are relevant for the MENA.

One of the difficulties in the assessment of temperature related climate impacts is the definition of hot weather extremes. Therefore, it is recommended to apply a range of climate indices such as heat wave frequency and warm spell duration (WMO 2009). Zittis et al. (2015) showed that the probability density distributions of daytime maximum temperatures in the warm temperate climate regime north of the Mediterranean are typically wider than in the arid areas to the south. In the latter case the extreme values are comparatively close to the median and mean of the maximum temperature distribution, so that even a moderate rate of warming can lead to the exceeding of heat wave thresholds.

Motivated by the demand for information about regional climate trends, we present projected changes in summertime hot weather conditions in the MENA during the 21st century based on the ensemble output of climate models that participated in the Coupled Model Intercomparison Project Phase 5, CMIP5 (Taylor et al. 2012; Sillmann et al. 2013a, 2013b). We evaluate CMIP5 model uncertainties for the MENA by comparing with observations, and also based on the robustness metric (Knutti and Sedlacek 2012), and show that the models consistently project strong temperature changes whereas precipitation projections are much less consistent. This rationalizes the present focus on temperature extremes, whereas for precipitation higher resolution regional downscaling will be more appropriate. For the latter we refer to the Coordinated Regional Climate Downscaling Experiment framework for the region, MENA-CORDEX (Giorgi et al. 2009; Zittis et al. 2014a; Almazroui 2015).

full article:
http://link.springer.com/article/10.1007%2Fs10584-016-1665-6